| Verfügbarkeitsstatus: | |
|---|---|
TT
HAIVOL
EN 50181 Steckbare Durchführungen über 1 kV bis 52 kV und von 250 A bis 2,5 kA für andere Geräte als flüssigkeitsgefüllte Transformatoren
EN 50180 Durchführungen über 1 kV bis 36 kV und von 250 A bis 3,15 kA für flüssigkeitsgefüllte Transformatoren
HD629.1 Prüfanforderungen für Zubehör zur Verwendung an Stromkabeln mit einer Nennspannung von 3,6/6(7,2)kV bis 20,8/36(42)kV – Teil 1: Kabel mit extrudierter Isolierung
IEC 60502.4 Stromkabel mit extrudierter Isolierung und deren Zubehör für Nennspannungen von 1 kV (U = 1,2 kV) bis 30 kV (U = 36 kV) – Teil 4: Prüfanforderungen für Zubehör für Kabel mit Nennspannungen von 6 kV bis 30 kV (U =). 36kV)
LEC60099 Metalloxid-Überspannungsableiter ohne Lücken für AC-Systeme
JB/T 8952 Metalloxid-Überspannungsableiter mit Polymergehäuse ohne Lücken für Wechselstromsysteme
Trennbares isoliertes Steckverbindersystem nach IEEE 386 für Stromverteilungssysteme über 600 V
GB11032 Metalloxid-Überspannungsableiter ohne Lücken für Wechselstromsysteme
JB/T 8952 Metalloxid-Überspannungsableiter mit Polymergehäuse ohne Lücken für Wechselstromsysteme
Der T-Stecker ist vollständig isoliert und vollständig abgedichtet und wird für den unterirdischen Hochspannungskabelanschluss verwendet, z Amerikanischer Schranktransformator, Ringhaupteinheit und Kabelabzweigkasten.Der kontinuierliche Betriebsstrom beträgt 600 A. Schließen Sie das Kabel mit den entsprechenden Spezifikationen an. Um den Fehler bequem und schnell zu finden, installieren Sie einen Potenzialanzeiger am Testpunkt und können auch einen Kabelfehleranzeiger installieren.
Beim Anschluss des T-Steckers mit 600A/200A-Lastumwandlung Mit dem Steckverbinder kann eine 600-A-Leitung in eine 200-A-Leitung umgewandelt und dann an einen 200-A-Winkelstecker und einen Winkelstecker mit Überspannungsableiter angeschlossen werden.

Körper aus T-Stecker
Spannungskegel
Bedienungsanleitung
Konformitätszertifikat
Crimp-Anschlüsse
Bolzenbolzen
Silikonfett
Isolierstopfen
(einschließlich halbleitender Endkappe)
Staubschutzkappe
Handtücher
Zusammenfassung
1、Bolzenbolzen: Verwenden Sie Edelstahlbolzen, um einen festen Sitz von Leiter und Hülse zu gewährleisten.
2、Isolierschicht: Spezielle Formel und Mischtechnologie zur Gewährleistung einer hohen Qualität des vorgefertigten EPDM-Gummis
3、Interne halbleitende Schicht: vorgefertigte innere halbleitende Schicht zur effektiven Kontrolle der Belastung des elektrischen Feldes.
4、Äußere halbleitende Schicht: Die vorgefertigte äußere halbleitende Schicht haftet eng an der Isolierschicht und sorgt dafür, dass die äußere halbleitende Schicht geerdet ist.
5、Isolierstopfen: Epoxidharz-Isolierstopfen mit Metallgewindeteilen, um eine enge Zusammenarbeit mit dem Bolzen zu gewährleisten.
6、Halbleitende Endkappe: Versiegeln Sie das Ende des Kabelsteckers, sodass das Gerät eine vollflächige, vollständig abgedichtete Funktion hat.
7、Spannungskegel: Unterschiedliche Größe des Spannungskegels durch Verwendung von Kabelverbindern, um Wasserdichtigkeit und Kabelentlastung zu gewährleisten.
8、Erdungsloch: Vorverdrahtet mit der Außenabschirmung für den Erdungskabelanschluss.
9 、 Anschlüsse: Alle Kupfer- oder Kupfer- und Aluminium-Crimpanschlüsse für Kupfer- oder Aluminiumleiter.
10、Spannungstest: Es wird verwendet, um zu testen, ob die Leitung elektrifiziert ist oder nicht, und es wird die Stromanzeige verwendet
Warme Tipps:
Bitte geben Sie bei der Bestellung das Produktmodell, den Spannungspegel, den Strompegel, das Kabelmaterial und den Kabelquerschnitt an, ob mit Live-Anzeigegerät.
Sollten Nutzer besondere Anforderungen haben, geben Sie diese bitte im Vertrag an.
EN 50181 Steckbare Durchführungen über 1 kV bis 52 kV und von 250 A bis 2,5 kA für andere Geräte als flüssigkeitsgefüllte Transformatoren
EN 50180 Durchführungen über 1 kV bis 36 kV und von 250 A bis 3,15 kA für flüssigkeitsgefüllte Transformatoren
HD629.1 Prüfanforderungen für Zubehör zur Verwendung an Stromkabeln mit einer Nennspannung von 3,6/6(7,2)kV bis 20,8/36(42)kV – Teil 1: Kabel mit extrudierter Isolierung
IEC 60502.4 Stromkabel mit extrudierter Isolierung und deren Zubehör für Nennspannungen von 1 kV (U = 1,2 kV) bis 30 kV (U = 36 kV) – Teil 4: Prüfanforderungen für Zubehör für Kabel mit Nennspannungen von 6 kV bis 30 kV (U =). 36kV)
LEC60099 Metalloxid-Überspannungsableiter ohne Lücken für AC-Systeme
JB/T 8952 Metalloxid-Überspannungsableiter mit Polymergehäuse ohne Lücken für Wechselstromsysteme
Trennbares isoliertes Steckverbindersystem nach IEEE 386 für Stromverteilungssysteme über 600 V
GB11032 Metalloxid-Überspannungsableiter ohne Lücken für Wechselstromsysteme
JB/T 8952 Metalloxid-Überspannungsableiter mit Polymergehäuse ohne Lücken für Wechselstromsysteme
Der T-Stecker ist vollständig isoliert und vollständig abgedichtet und wird für den unterirdischen Hochspannungskabelanschluss verwendet, z Amerikanischer Schranktransformator, Ringhaupteinheit und Kabelabzweigkasten.Der kontinuierliche Betriebsstrom beträgt 600 A. Schließen Sie das Kabel mit den entsprechenden Spezifikationen an. Um den Fehler bequem und schnell zu finden, installieren Sie einen Potenzialanzeiger am Testpunkt und können auch einen Kabelfehleranzeiger installieren.
Beim Anschluss des T-Steckers mit 600A/200A-Lastumwandlung Mit dem Steckverbinder kann eine 600-A-Leitung in eine 200-A-Leitung umgewandelt und dann an einen 200-A-Winkelstecker und einen Winkelstecker mit Überspannungsableiter angeschlossen werden.

Körper aus T-Stecker
Spannungskegel
Bedienungsanleitung
Konformitätszertifikat
Crimp-Anschlüsse
Bolzenbolzen
Silikonfett
Isolierstopfen
(einschließlich halbleitender Endkappe)
Staubschutzkappe
Handtücher
Zusammenfassung
1、Bolzenbolzen: Verwenden Sie Edelstahlbolzen, um einen festen Sitz von Leiter und Hülse zu gewährleisten.
2、Isolierschicht: Spezielle Formel und Mischtechnologie zur Gewährleistung einer hohen Qualität des vorgefertigten EPDM-Gummis
3、Interne halbleitende Schicht: vorgefertigte innere halbleitende Schicht zur effektiven Kontrolle der Belastung des elektrischen Feldes.
4、Äußere halbleitende Schicht: Die vorgefertigte äußere halbleitende Schicht haftet eng an der Isolierschicht und sorgt dafür, dass die äußere halbleitende Schicht geerdet ist.
5、Isolierstopfen: Epoxidharz-Isolierstopfen mit Metallgewindeteilen, um eine enge Zusammenarbeit mit dem Bolzen zu gewährleisten.
6、Halbleitende Endkappe: Versiegeln Sie das Ende des Kabelsteckers, sodass das Gerät eine vollflächige, vollständig abgedichtete Funktion hat.
7、Spannungskegel: Unterschiedliche Größe des Spannungskegels durch Verwendung von Kabelverbindern, um Wasserdichtigkeit und Kabelentlastung zu gewährleisten.
8、Erdungsloch: Vorverdrahtet mit der Außenabschirmung für den Erdungskabelanschluss.
9 、 Anschlüsse: Alle Kupfer- oder Kupfer- und Aluminium-Crimpanschlüsse für Kupfer- oder Aluminiumleiter.
10、Spannungstest: Es wird verwendet, um zu testen, ob die Leitung elektrifiziert ist oder nicht, und es wird die Stromanzeige verwendet
Warme Tipps:
Bitte geben Sie bei der Bestellung das Produktmodell, den Spannungspegel, den Strompegel, das Kabelmaterial und den Kabelquerschnitt an, ob mit Live-Anzeigegerät.
Sollten Nutzer besondere Anforderungen haben, geben Sie diese bitte im Vertrag an.
Keramische Isolatoren, die hauptsächlich aus Aluminiumoxidsilikat bestehen, sind wichtige Komponenten in Freileitungs- und Verteilungsleitungen. Ihre langfristige Zuverlässigkeit wird durch Umweltbelastungen beeinträchtigt, die zu Leistungseinbußen führen. In diesem Artikel werden die grundlegenden Alterungsmechanismen von Keramikisolatoren analysiert, wobei der Schwerpunkt auf ultravioletter (UV) Strahlung und der Ansammlung von Schadstoffen liegt. Darüber hinaus werden die neuesten Fortschritte bei funktionellen Beschichtungstechnologien untersucht, die diese Auswirkungen abmildern und so die Lebensdauer verlängern und die Netzstabilität gewährleisten sollen.
Seit Jahrzehnten ist die Kernaufgabe des Überspannungsableiters gleich geblieben: elektrische Geräte vor transienten Überspannungen zu schützen, sei es durch Blitzeinschläge oder Schaltvorgänge, indem ein niederohmiger Pfad zur Erde bereitgestellt und der normale Systembetrieb schnell wiederhergestellt wird. Die Mittel zur Erreichung dieser Mission unterliegen jedoch einem radikalen Wandel. Angetrieben durch die Anforderungen moderner Stromnetze – zunehmende Integration erneuerbarer Energien, Digitalisierung und das Bedürfnis nach größerer Zuverlässigkeit – schreitet die Ableitertechnologie über ihre traditionelle, passive Rolle hinaus in eine Ära intelligenter, anpassungsfähiger und äußerst belastbarer Komponenten.
Trennschalter, auch Trennschalter oder Isolatoren genannt, sind grundlegende Komponenten in elektrischen Energiesystemen. Ihre Hauptfunktion besteht darin, einen sichtbaren Bruchpunkt zur Isolierung bereitzustellen und so eine sichere Wartung und Reparatur nachgeschalteter Geräte zu gewährleisten. Im Gegensatz zu Leistungsschaltern sind sie nicht dafür ausgelegt, Laststrom oder Fehlerstrom zu unterbrechen. Ihr zuverlässiger Betrieb – Öffnen und Schließen auf Befehl – ist jedoch entscheidend für die Systemsicherheit, Flexibilität und Verfügbarkeit.
Sicherungen sind wichtige, aber oft übersehene passive Schutzvorrichtungen und für die elektrische Sicherheit von grundlegender Bedeutung. Ihr zuverlässiger Betrieb hängt von der Unversehrtheit der Isolierflächen und des Schmelzelementes ab. Dieser Artikel befasst sich mit zwei vorherrschenden Fehlerarten: Oberflächenverunreinigungsüberschlag und interne Alterung/Verschlechterung. Wir bieten eine detaillierte technische Analyse der Mechanismen, skizzieren fortgeschrittene und praktische Identifizierungstechniken und schreiben ein systematisches Wartungsprotokoll vor, um die Systemzuverlässigkeit zu verbessern und unerwartete Ausfallzeiten zu verhindern.
Der globale Übergang zu intelligenten Netzen stellt einen grundlegenden Wandel in der Art und Weise dar, wie wir elektrische Energie erzeugen, verteilen und verbrauchen. Smart Grids zeichnen sich durch bidirektionalen Stromfluss, tiefe Integration verteilter Energieressourcen (DERs) wie Sonne und Wind, fortschrittliche Messinfrastruktur (AMI) und Echtzeit-Datenanalyse aus und erfordern eine neue Generation von Schutzgeräten. Unter diesen befindet sich die einfache Sicherung, seit über einem Jahrhundert ein Eckpfeiler des elektrischen Schutzes, in einem tiefgreifenden technologischen Wandel. Die Zukunft der Sicherungstechnologie liegt in der Entwicklung von einer einfachen, aufopfernden Schutzkomponente zu einem intelligenten, anpassungsfähigen und datenreichen Netzwert.
Seit Jahrzehnten ist die Kernaufgabe des Überspannungsableiters gleich geblieben: elektrische Geräte vor transienten Überspannungen zu schützen, sei es durch Blitzeinschläge oder Schaltvorgänge, indem ein niederohmiger Pfad zur Erde bereitgestellt und der normale Systembetrieb schnell wiederhergestellt wird. Die Mittel zur Erreichung dieser Mission unterliegen jedoch einem radikalen Wandel. Angetrieben durch die Anforderungen moderner Stromnetze – zunehmende Integration erneuerbarer Energien, Digitalisierung und das Bedürfnis nach größerer Zuverlässigkeit – schreitet die Ableitertechnologie über ihre traditionelle, passive Rolle hinaus in eine Ära intelligenter, anpassungsfähiger und äußerst belastbarer Komponenten.
Überspannungsableiter für Verteilungsleitungen (Distribution Line Surge Ableiter, DLSAs) dienen als kritische Schutzvorrichtungen, die in Freileitungsstromverteilungssystemen installiert werden und typischerweise zwischen 1 kV und 38 kV ausgelegt sind. Ihre Hauptaufgabe besteht darin, elektrische Geräte, Transformatoren und Infrastruktur vor transienten Überspannungen zu schützen, die durch Blitzeinschläge, Schaltvorgänge und andere elektrische Störungen verursacht werden.
MOSKAU, RUSSLAND – Vom 2. bis 4. Dezember 2025 nahm Zhejiang Haivo erfolgreich an der Internationalen Ausstellung für elektrische Netzausrüstung in Russland teil und präsentierte seine neuesten Innovationen in der elektrischen Schutz- und Stromverteilungstechnologie.
Ausfallsicherungsschalter sind wichtige Komponenten in Freileitungsverteilungssystemen und bieten Überstromschutz und Isolierung. Allerdings führt eine längere Einwirkung von Umwelteinflüssen sowie elektrischen und mechanischen Belastungen zu einer Alterung, die Leistung und Zuverlässigkeit beeinträchtigt. Dieser Artikel untersucht die primären Alterungsmechanismen und skizziert wirksame Präventions- und Wartungsstrategien zur Verlängerung der Lebensdauer und Gewährleistung der Systemsicherheit.
Hochspannungs-Stecker- und -Buchsensysteme für den Außenbereich (typischerweise 1 kV bis 52 kV) stellen anspruchsvolle technische Lösungen dar, die für sichere und zuverlässige Stromverbindungen in anspruchsvollen Umgebungen entwickelt wurden. Diese trennbaren Steckverbinder ermöglichen eine flexible Stromverteilung bei gleichzeitiger Wahrung der Systemintegrität in Versorgungsnetzen, Industrieanlagen und Anwendungen für erneuerbare Energien. Im Gegensatz zu Niederspannungs-Steckverbindern erfordern HV-Steckverbinder eine sorgfältige Beachtung der Kontrolle des elektrischen Feldes, der Isolationskoordination und des Umweltschutzes.
Email:jonsonchai@chinahaivo.com
WECHAT: +86 13587716869
WhatsApp: +86 13587716869
Tel: 0086-577-62836929.
0086-577-62836926.
0086-13587716869.
0086-15957720101.